Abstract
For a given (current or planned) traffic demand, different air traffic management measures could result in different airport traffic complexity and efficiency. This paper presents the research on the relationship between airport traffic complexity and time and environmental efficiency for different air traffic control (ATC) tactics applied to the given or planned airport layout. Emphasis is placed on the evaluation of airport traffic complexity, aircraft fuel consumption, gas emissions and time efficiency for different ATC tactics and/or airport airfield layouts. For busy airports during peak hours, arrival queuing delays, taxi-in, taxi-out times and departure queuing delays increase, which induces additional unnecessary fuel consumption, gas emission and time inefficiency. In order to find a tool which could indicate potential delay generators, a measure of airport traffic complexity – called Dynamic Complexity is proposed. Experiments were performed for airports with different airfield layouts, for different traffic demands and ATC applied tactics using SIMMOD simulation model. Traffic situations were analyzed and delays were measured. The values of airport traffic complexity, fuel consumption and gas emissions were also determined. A comparative analysis of the results show: first, the proposed airport traffic complexity metric quite satisfactorily reflects the influence of traffic characteristics upon the environmental state of the system, and second, different ATM strategic and tactical measures (airport airfield infrastructure development and applied ATC tactics) could significantly reduce traffic complexity and increase time and environmental efficiency at the airport.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.