Abstract
Airline operations are subject to a number of stochastic influences which result into variable ground and block times for same flights on different days. Our research explores how airline operations control centers may benefit from an integrated decision support system for schedule recovery during aircraft ground operations. In this paper, we study the sensitivity of an optimal set of schedule recovery options towards uncertain arrival times. The calculation of recovery options is based upon an integrated and iterative scheduling and optimization algorithm, which incorporates uncertainties for arrival flights as a function of a given look-ahead time. Potential recovery options include stand re-allocation, quick-turnaround, quick passenger transfer, waiting for transfer passengers, cancellation of passenger or crew connections, and arrival prioritization. Within a case study setting at Frankfurt Airport, 20 aircraft turnarounds are analysed during a morning peak with their respective estimated arrival times (including potential arrival delays). The analysis of simulation results reveals an almost identical set of selected recovery options under high uncertainty circumstances and from post-operational point-of-view, which indicates high solution stability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.