Abstract

The air‐gun array signature is close to minimum‐phase as a function of continuous time, in the sense that for processing purposes its phase spectrum can be derived from the Hilbert transform of the logarithm of its amplitude spectrum. This phase spectrum is different, however, from the minimum‐phase spectrum that is estimated by spiking deconvolution for a sampled and time‐windowed version of the signature. As a consequence, there can be large phase errors when spiking deconvolution is applied to an air‐gun signature or to a recording instrument response. The errors can be shown to consist primarily of a time shift and, at least visually over a limited bandwidth, a phase rotation of the output wavelet. The time shift is introduced by time sampling, while the phase rotation is caused by the spectral smoothing generated by time windowing. If the seismic wavelet as a whole, and not just the air‐gun signature, is minimum‐phase, then the total residual phase error after spiking deconvolution, including also th...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call