Abstract

Potential flow over an airfoil plays an important historical role in the theory of flight. The governing equation for potential flow is Laplaceʼs equation, a widely studied linear partial differential equation. One of Greenʼs identities can be used to write a solution to Laplaceʼs equation as a boundary integral. Numerical models based on this approach are known as panel methods in the aerodynamics community. This article introduces the availability of a collection of computational tools for constructing numerical models for potential flow over an airfoil based on panel methods. Use of the software is illustrated by implementing a specific model using vortex panels of linearly varying strength to compute the flow over a member of the NACA four-digit family of airfoils.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call