Abstract
A wealth of information about respiratory system is encoded in the airflow signal. While direct measurement of airflow via spirometer with an occlusive seal is the gold standard, this may not be practical for ambulatory monitoring of patients. Advances in sensor technology have made measurement of motion of the thorax and abdomen feasible with small inexpensive devices, but estimating airflow from these time series is challenging due to the presence of complicated nonstationary oscillatory signals. To properly extract the relevant oscillatory features from thoracic and abdominal movement, a nonlinear-type time-frequency analysis tool, the synchrosqueezing transform, is employed; these features are then used to estimate the airflow by a locally stationary Gaussian process regression. It is shown that, using a dataset that contains respiratory signals under normal sleep conditions, accurate airflow out-of-sample predictions, and hence the precise estimation of an important physiological quantity, inspiration respiration ratio, can be achieved by fitting the proposed model both in the intra- and inter-subject setups. The method is also applied to a more challenging case, where subjects under general anesthesia underwent transitions from pressure support to unassisted ventilation to further demonstrate the utility of the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.