Abstract

Abstract Many CBRN agents are very difficult to detect and identify, due to the fact that most technologies, equipment and materials used for their obtainment have also commercial applications. One possibility to counteract such threats, both for military and civilians, is to use systems of collective protection (COLPRO), which must be manufactured from materials that can withstand not only the action of CBRN agents, but, as much as possible, toxic industrial materials (TIMs). The computational fluid dynamics (CFD) study of the atmosphere in the neighbourhood of the COLPRO tent and the air flow dynamics inside the tent give all the necessary data regarding the effect of air circulation on the entire COLPRO system. Based on this study, a favourable orientation of the COLPRO tent may be established relatively to the strategic position of the troops or the civilian groups, versus statistical wind speed, direction and charge.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.