Abstract
Piezoelectricity, flexibility, light weight, and biocompatibility of piezoelectric polymer fibers are the desired attributes for energy harvesting and sensing in wearable and biomedical applications. However, the relatively insufficient piezoelectric performance of piezoelectric polymers remains an issue. Here, we demonstrate a considerable increase in P(VDF-TrFE) fiber alignment via electrospinning with a rapidly rotating collector, which substantially enhanced the piezoelectric performance of the fiber mat over a large area. Considering the relationship between the airflow induced near the collector surface and the rotating speed, the collectors with different geometries were systematically compared in terms of the degree of alignment, fiber morphology, and the resulting crystalline electroactive phases of the fibers produced by each collector. We found that the strong airflow induced by the rapid rotation of the modified drum collector contributes to the preferential fiber orientation by pulling and stretching over a large area, which led to an increase in the crystalline electroactive β-phase content responsible for piezoelectricity. As a result, a maximum voltage of 116.6 V and maximum output power of 13.6 µW were achieved using a flexible piezoelectric device comprising a large-area, highly aligned P(VDF-TrFE) fiber mat produced from a modified drum collector at a significantly high speed. This work provides a facile but powerful solution for the wide use of piezoelectric polymer fibers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.