Abstract
We consider the gas state behind a shock wave front in air with a velocity v≥10 km/sec. Nonequilibrium ionization and radiative transport are taken into account. We take into consideration the real air spectrum — the numerous lines, bands, and continuua. Account for the radiation leads to an integrodifferential system of equations for which a solution method is developed. As a result we obtain the gas parameter profiles behind the shock wave, which are affected by the relaxation processes and radiative cooling. The calculations were made for v=10–16 km/sec and a pressure p=10−5–10−2 atm ahead of the front.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.