Abstract

AIRE is an unconventional transcription factor that enhances the expression of thousands of genes in medullary thymic epithelial cells and promotes clonal deletion or phenotypic diversion of self-reactive T cells1-4. The biological logic of AIRE's target specificity remains largely unclear as, in contrast to many transcription factors, it does not bind to a particular DNA sequence motif. Here we implemented two orthogonal approaches to investigate AIRE's cis-regulatory mechanisms: construction of a convolutional neural network and leveraging natural genetic variation through analysis of F1 hybrid mice5. Both approaches nominated Z-DNA and NFE2-MAF as putative positive influences on AIRE's target choices. Genome-wide mapping studies revealed that Z-DNA-forming and NFE2L2-binding motifs were positively associated with the inherent ability of a gene's promoter to generate DNA double-stranded breaks, and promoters showing strong double-stranded break generation were more likely to enter a poised state with accessible chromatin and already-assembled transcriptional machinery. Consequently, AIRE preferentially targets genes with poised promoters. We propose a model in which Z-DNA anchors the AIRE-mediated transcriptional program by enhancing double-stranded break generation and promoter poising. Beyond resolving a long-standing mechanistic conundrum, these findings suggest routes for manipulating T cell tolerance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call