Abstract

The strong genetic association between autoimmune regulator (AIRE) and autoimmune diseases indicates its critical role in immune tolerance. AIRE deficiency is thought to promote the development of follicular helper T (TFH) cells, which are considered to be essential in B cell proliferation. Excessive TFH cell generation is a key step towards the development of autoimmune diseases, including type 1 diabetes. However, the potential mechanism by which AIRE contributes to the generation and function of the TFH cell population has remained elusive. We show that AIRE reduced TFH cell generation by inhibiting the expression of inducible costimulatory ligand (ICOSL), interleukin (IL)-6 and IL-27 in dendritic cells (DCs). To understand the precise impact of AIRE-overexpressing bone marrow-derived DCs (AIRE-BMDCs) on type 1 diabetes progression and the associated molecular mechanisms, we transferred AIRE-BMDCs to recipient NOD mice and found that transplantation of AIRE-BMDCs can prevent or delay the onset of diabetes, attenuate diabetes after the establishment of overt hyperglycaemia, and lead to the inhibition of autoreactive pathological TFH cells and germinal centre (GC) B cells. To further determine the potential mechanism underlying this TFH cell depletion, BMDCs were cotransferred with recombinant mouse ICOSL (ICOSLG protein). We demonstrated that NOD mice were more susceptible to diabetes when they received AIRE-BMDCs and ICOSLG than when they received only mock-vehicle BMDCs (GFP-BMDCs). In addition, we did not observe the reversal of diabetes in any mice subjected to this cotransfer system. A single cycle of ICOSLG treatment temporarily promoted TFH cell proliferation and GC development. Our results reveal a mechanistic role of AIRE-BMDCs in the initiation of TFH cell differentiation, and the AIRE-mediated decrease in ICOSL expression in BMDCs plays a critical role. The effect of decreased ICOSL expression in type 1 diabetes will guide the design and evaluation of parallel studies in patients.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.