Abstract

This paper proposes a hybrid model which combines state-space representation and back-propagation neural network to describe the aircraft unsteady aerodynamic characteristics. Firstly, the state-space model is analysed and evaluated using wind-tunnel experimental data. Subsequently, back-propagation neural network is introduced and combined with state-space representation to form a hybrid model. In this hybrid model, the separation point model in state-space representation is reserved to describe the time delay of the unsteady aerodynamic responses, while the conventional polynomial model is replaced by back-propagation neural network to improve accuracy and universality. Finally, lift coefficient and pitch moment coefficient data from the wind-tunnel experiments are used to estimate the hybrid model. With high similarity to the wind-tunnel data, the hybrid model presented in this paper is proved to be accurate and effective for aircraft unsteady aerodynamic modeling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call