Abstract

Abstract. The Green Ocean Amazon (GoAmazon 2014/5) campaign, conducted from January 2014 to December 2015 in the vicinity of Manaus, Brazil, was designed to study the aerosol life cycle and aerosol–cloud interactions in both pristine and anthropogenically influenced conditions. As part of this campaign, the U.S. Department of Energy (DOE) Gulfstream 1 (G-1) research aircraft was deployed from 17 February to 25 March 2014 (wet season) and 6 September to 5 October 2014 (dry season) to investigate aerosol and cloud properties aloft. Here, we present results from the G-1 deployments focusing on measurements of the aerosol chemical composition and secondary organic aerosol (SOA) formation and aging. In the first portion of the paper, we provide an overview of the data and compare and contrast the data from the wet and dry season. Organic aerosol (OA) dominates the deployment-averaged chemical composition, comprising 80 % of the non-refractory PM1 aerosol mass, with sulfate comprising 14 %, nitrate 2 %, and ammonium 4 %. This product distribution was unchanged between seasons, despite the fact that total aerosol loading was significantly higher in the dry season and that regional and local biomass burning was a significant source of OA mass in the dry, but not wet, season. However, the OA was more oxidized in the dry season, with the median of the mean carbon oxidation state increasing from −0.45 in the wet season to −0.02 in the dry season. In the second portion of the paper, we discuss the evolution of the Manaus plume, focusing on 13 March 2014, one of the exemplary days in the wet season. On this flight, we observe a clear increase in OA concentrations in the Manaus plume relative to the background. As the plume is transported downwind and ages, we observe dynamic changes in the OA. The mean carbon oxidation state of the OA increases from −0.6 to −0.45 during the 4–5 h of photochemical aging. Hydrocarbon-like organic aerosol (HOA) mass is lost, with ΔHOA∕ΔCO values decreasing from 17.6 µg m−3 ppmv−1 over Manaus to 10.6 µg m−3 ppmv−1 95 km downwind. Loss of HOA is balanced out by formation of oxygenated organic aerosol (OOA), with ΔOOA∕ΔCO increasing from 9.2 to 23.1 µg m−3 ppmv−1. Because hydrocarbon-like organic aerosol (HOA) loss is balanced by OOA formation, we observe little change in the net Δorg∕ΔCO values; Δorg∕ΔCO averages 31 µg m−3 ppmv−1 and does not increase with aging. Analysis of the Manaus plume evolution using data from two additional flights in the wet season showed similar trends in Δorg∕ΔCO to the 13 March flight; Δorg∕ΔCO values averaged 34 µg m−3 ppmv−1 and showed little change over 4–6.5 h of aging. Our observation of constant Δorg∕ΔCO are in contrast to literature studies of the outflow of several North American cities, which report significant increases in Δorg∕ΔCO for the first day of plume aging. These observations suggest that SOA formation in the Manaus plume occurs, at least in part, by a different mechanism than observed in urban outflow plumes in most other literature studies. Constant Δorg∕ΔCO with plume aging has been observed in many biomass burning plumes, but we are unaware of reports of fresh urban emissions aging in this manner. These observations show that urban pollution emitted from Manaus in the wet season forms less particulate downwind as it ages than urban pollution emitted from North American cities.

Highlights

  • Aerosol particles have important impacts on visibility, human health, and the Earth’s energy balance and water cycle

  • Because secondary organic aerosol (SOA) is such a large fraction of the aerosol mass, condensation of SOA is critical to growing nucleation-mode particles, which are initially too small to serve as cloud condensation nuclei (CCN), to sizes that are capable of forming cloud droplets (Ehn et al, 2014; Riipinen et al, 2011; Pierce et al, 2012), though a recent study showed that unique conditions in the Amazon allowed particles smaller than 50 nm to act as CCN during Green Ocean Amazon campaign (GoAmazon 2014/5; Fan et al, 2018)

  • Though we focus on org values based on the AMS data, we calculated volume/ CO using aerosol size distribution data from two independent instruments, the Ultra-High Sensitivity Aerosol Spectrometer (UHSAS) and the Fast Integrated Mobility Spectrometer (FIMS), that were on board the Gulfstream 1 (G-1)

Read more

Summary

Introduction

Aerosol particles have important impacts on visibility, human health, and the Earth’s energy balance and water cycle. As part of this campaign, the DOE Gulfstream 1 (G-1) research aircraft conducted two 6-week-long missions in which it investigated the evolution of the Manaus plume as it was transported into the surrounding Amazon tropical rain forest. The timing of these flight missions was chosen to provide a contrast between the wet and dry season (Martin et al, 2016). In the second portion of the paper, we examine, in detail, the first 4–6.5 h of photochemical aging of the Manaus plume as it is transported into the surrounding tropical forest and interacts with biogenic emissions

G-1 flight strategy
Instrumentation
Overview of G-1 aerosol data and comparison of wet and dry seasons
Evolution of organic aerosol in the Manaus plume
Sources of sulfate in the Manaus region
Summary and implications

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.