Abstract

Existing computer simulations of aircraft infrared signature (IRS) do not account for dispersion induced by uncertainty on input parameters, such as aircraft aspect angles and meteorological conditions. As a result, they are of little use to quantify the detection performance of IR optronic systems: in this case, the scenario encompasses a lot of possible situations that must indeed be considered, but cannot be individually simulated. In this paper, we focus on low resolution infrared sensors and we propose a methodological approach for predicting simulated IRS dispersion of an aircraft, and performing a classification of different aircraft on the resulting set of low resolution infrared images. It is based on a quasi-Monte Carlo survey of the code output dispersion, and on a maximum likelihood classification taking advantage of Bayesian dense deformable template models estimation. This method is illustrated in a typical scenario, i.e., a daylight air-to-ground full-frontal attack by a generic combat aircraft flying at low altitude, over a database of 30,000 simulated aircraft images. Assuming a spatially white noise background model, classification performance is very promising, and appears to be more accurate than more classical state of the art techniques (such as kernel-based support vector classifiers).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call