Abstract
Based on airborne observations during the Baltex Bridge Cloud (BBC) campaign in September 2001, the impact of two layer cloud systems, gas absorption and surface albedo on cloud radiative smoothing is investigated. Multispectral nadir radiance measurements have been conducted which cover the visible and near infrared wavelength range. The observed radiances are transformed into Fourier space where ranges of scale-invariance are identified. Associated slopes and scale breaks are determined and used to characterize the impacts on cloud radiative smoothing. The results reveal that an increase of gas absorption reduces the small scale slope and the scale break due to a decreasing likelihood of horizontal photon transport. Another impact is that the increasing gas absorption reduces the cloud surface interaction, which is indicated by an increase of the large scale slope. An increasing surface albedo results in large scale cloud radiative smoothing and is associated with a decrease of the large scale slope. This effect depends on the cloud height and the cloud morphology. Two layer cloud systems exhibit a similar behaviour in Fourier space as large surface albedos beneath a single cloud deck. It is argued that the impact of two layer cloud systems on large scale cloud radiative smoothing may not be typical for two layer clouds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.