Abstract
Background and Objectives: The COVID-19 pandemic has highlighted the risk of airborne transmission of infections in health-care facilities such as dental clinics. In this experimental study, methods to control airborne particles in a simulated dental clinic setting were measured and compared using a low cost and convenient technique. Materials and Methods: Particles representing inhalable airborne particles were generated using smoke from incense sticks and their concentration measured by handheld particle sensors whereas using different engineering controls for the particle removal in dental clinic equivalent settings. Measurements were made at short (<3 ft) and intermediate (between 3 and 6 ft) distance from the source. The particle filtration through surgical masks and N95 masks was also studied. Results: Natural ventilation, by keeping windows open, can reduce intermediate range particles (removal of 4.7% of ambient particles/min). However, in closed facilities without natural ventilation, particle removal by air purifier combined with overhead fan or with high volume evacuators was found most suitable for intermediate range particles (25.9%/min) and for short range particles (27.6%/min), respectively. N95 masks were found to filter out 99.5% of the generated PM 2.5 particles. Conclusions: Potentially inhalable airborne particles can persist in the air of a dental clinic. The use of N95 masks and environmental controls is essential for the dental team's safety. The choice of an engineering control is governed by multiple factors explained in the study. Smoke particles generated by incense sticks and measurement by handheld particle sensors are low-cost methods to estimate the effectiveness of airborne particle controls.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.