Abstract

To investigate the effects of airborne fine particle on cell viability and inflammation in human bronchial epithelial cells. Methods: Atmospheric PM2.5 samples were collected by PM2.5 sampler. PM2.5 morphology was observed by scanning electron microscope (SEM). Human bronchial epithelial cells (BEAS-2B) were treated with PM2.5 at different concentrations (0, 50, 100, 200, 400, 800 μg/mL) for 12, 24 or 48 hours, and the cell activity were evaluated by cell counting kit-8 (CCK-8). The mRNA expression levels of (granulocyte-macrophage colony stimulating factor,GM-CSF) and TNF-α were detected by quantitative real-time PCR (qRT-PCR). Western blot was used to detect the protein expressions of GM-CSF and TNF-α. Results: According to SEM, the shape of PM2.5 varied, and the diameter was different and mostly equal to or less than 2.5 μm. CCK-8 assay showed that different concentrations of PM2.5 exposure for 12 hours, 24 hours and 48 hours resulted in loss of cell viability of BEAS-2B cells (P<0.05). Different concentrations of PM2.5 increased the mRNA and protein expression of GM-CSF and TNF-α, and the higher concentration of PM2.5 induced higher expression, which have statistical significant difference between the groups (P<0.05). Conclusion: Atmospheric PM2.5 can cause inflammatory response in human bronchial epithelial cells. They can reduce cell viability, which may be related to the PM2.5 trigger and aggravation of bronchopulmonary inflammatory diseases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call