Abstract
The major impediment to accurate airborne repeat-pass differential synthetic aperture radar (SAR) interferometry (DInSAR) is compensating for aircraft motion caused by air turbulence. Various motion compensation (MoCo) procedures have been used in the airborne DInSAR processing to acquire reliable deformation mapping. In this paper, we present the use of time-domain backprojection (BP) algorithm for SAR focusing in an airborne DInSAR survey: No MoCo procedure is needed because the BP algorithm is inherently able to compensate for platform motion. In this study, we present the results of a pilot study aimed at demonstrating the feasibility of deformation mapping with an airborne SAR system based on the monitoring of the Slumgullion landslide in Colorado, USA between July 3 and 10 of 2015. The employed airborne SAR system is an Artemis SlimSAR that is a compact, modular, and multi-frequency radar system. Airborne light detection and ranging and global navigation satellite system (GNSS) observations, as well as spaceborne DInSAR results using COSMO-SkyMed (CSK) images, were used to verify the performance of the airborne SAR system. The surface velocities of the landslide derived from the airborne DInSAR observations showed good agreement with the GNSS and spaceborne DInSAR estimates. A three-dimensional deformation map of the Slumgullion landslide was also generated, which displayed distinct correlation between the landslide motion and topographic variation. This study shows that an inexpensive airborne L -band DInSAR system has the potential to measure centimeter level deformation with flexible temporal and spatial baselines.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.