Abstract

An instrument is described that provides real-time chemical analysis of the composition of individual aerosol particles. A differentially pumped aerosol inlet transfers particles from the ambient atmosphere into the source region of a time-of-flight mass spectrometer where they impact on a heated surface and the resulting vapors are ionized by electron ionization prior to mass analysis. Labora tory calibration studies demonstrated that the instrument was capable of detecting particles with diameters greater than approximately 0.4mu m. The instrument was operated on the NASA DC-8 research aircraft as part of the 1996 SUbsonic aircraft: Contrail and Cloud Effects Special Study (SUCCESS) mission with the intent of studying the chemical composition of upper tropospheric particles. More than 25,000 aerosol particle mass spectra were recorded during 19 mission flights. Although approximately 120 of those spectra showed clear evidence of sulfate, nitrate, and other inorganic materials, the remaining spectra contained only mass peaks consistent with water. Moreover, particles were detected only while traversing clouds. These results are not consistent with expectations of the size, quantity, or composition of upper tropospheric particles. It is likely, however, that a subisokinetic aircraft sampling inlet resulted in the collection of only very large ice particles. This situation would account for both the observed preponder ance of water-only spectra and the apparent lack of particles outside of clouds. Despite the sampling problem, the instrument was able to chemically speciate aerosols directly sampled from a medium altitude aircraft. These represent the first examples of aerosol particles chemically speciated in real time from an airborne platform.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.