Abstract

A thermoeconomic model of a novel hybrid solar gas-turbine power plant with an air-based bottoming cycle has been developed, allowing its thermodynamic, economic, and environmental performance to be analyzed. Multi-objective optimization has been performed to identify the trade-off between two conflicting objectives: minimum capital cost and minimum specific CO2 emissions. In-depth thermoeconomic analysis reveals that the additional bottoming cycle significantly reduces both the levelized cost of electricity and the environmental impact of the power plant (in terms of CO2 emissions and water consumption) when compared to a simple gas-turbine power plant without bottoming cycle. Overall, the novel concept appears to be a promising solution for sustainable power generation, especially in water-scarce areas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.