Abstract
Hydrocarbons from the Elk Hills Naval Petroleum Reserve (NPR#1), Bakersfield, CA, are enriched in heavy noble gases. The 132Xe/ 36Ar ratios are as high as ∼576 times the ratio in air and represent the largest relative Xe-enrichments ever observed in terrestrial fluids. The Xe isotopic composition is indistinguishable from air. We show that these samples cannot be explained by equilibration of oil with air saturated water and secondary enrichment via a Rayleigh distillation gas stripping process. Based on laboratory studies of others with potential petroleum source rocks, we believe the source of this enriched heavy noble gas component was adsorbed air initially trapped in/on the source rocks that was expelled and mixed with the hydrocarbons during expulsion and primary migration. Kr and Xe enrichments decrease with increasing 36Ar concentration. We propose a model in which an initial Kr–Xe-enriched hydrocarbon becomes diluted with noble gases extracted from air saturated groundwater during expulsion, migration, and storage. The model generates an integrated water/hydrocarbon ratio for the production fluid which indicates a minimal role for water in hydrocarbon expulsion and migration. The results are interpreted to provide time/geometrical constraints on the mechanisms by which hydrocarbons can migrate as a separate phase.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.