Abstract
Artificial muscles are indispensable components for next-generation robotics to mimic the sophisticated movements of living systems and provide higher output energies when compared with real muscles. However, artificial muscles actuated by electrochemical ion injection have problems with single actuation properties and difficulties in stable operation in air. Here, air-working electrochromic artificial muscles (EAMs) with both color-changing and actuation functions are reported, which are constructed based on vanadium pentoxide nanowires and carbon tube yarn. Each EAM can generate a contractile stroke of ≈12% during stable operation in the air with multiple color changes (yellow-green-gray) under ±4V actuation voltages. The reflectance contrast is as high as 51%, demonstrating the excellent versatility of the EAMs. In addition, a torroidal EAM arrangement with fast response and high resilience is constructed. The EAM's contractile stroke can be displayed through visual color changes, which provides new ideas for future artificial muscle applications in soft robots and artificial limbs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.