Abstract
When processing track sequences, it is time-consuming and difficult to separate clusters with substantial density variations to deal with the problem of classic clustering methods mining common flight patterns in airspace. To overcome these issues, this research proposes a clustering-based technique for mining air traffic trajectory operation patterns. The track data are first decoded and rebuilt using a motion-based track training approach; next, a compression based on a deep autoencoder (OFAE) is provided, allowing the model to deal with the high-dimensional trajectory vector containing derived information. The compressed trajectory data are made as compact and dense as feasible using the L21 norm constraint, which reduces the operation time and improves the performance of the clustering process. The compressed trajectory is then analyzed using a fast-clustering algorithm based on density peaks (DPCA). To save time, a more refined distance measurement technique is added into the model in order to achieve the usual aircraft operation mode in the terminal area. The accuracy of trajectory prediction can be improved by using the generated unitized and high-class similarity trajectory data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.