Abstract
As the air traffic volume has increased significantly over the world, the great mass of traffic management data, named as Big Data, have also accumulated day by day. This factor presents more opportunities and also challenges as well in the study and development of Air Traffic Management (ATM). Usually, Decision Support Systems (DSS) are developed to improve the efficiency of ATM. The main problem for these systems is the data analysis to acquisition sufficient knowledge for the decision. This paper introduces the application of the methods of Data Mining to get the knowledge from air traffic Big Data in management processes. The proposed approach uses a Bayesian network for the data analysis to reduce the costs of flight delay. The process makes possible to adjust the flight plan such as the schedule of arrival at or departure from an airport and also checks the airspace control measurements considering weather conditions. An experimental study is conducted based on the flight scenarios between Los Angeles International Airport (LAX) and Miami International Airport (MIA).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.