Abstract

The role of air traffic controllers is to direct and manage highly dynamic flights. Their work requires both efficiency and accuracy. Previous studies have shown that fatigue in air traffic controllers can impair their work ability and even threaten flight safety, which makes it necessary to carry out research into how to optimally detect fatigue in controllers. Compared with single-modality fatigue detection methods, multi-modal detection methods can fully utilize the complementarity between diverse types of information. Considering the negative impacts of contact-based fatigue detection methods on the work performed by air traffic controllers, this paper proposes a novel AF dual-stream convolutional neural network (CNN) architecture that simultaneously extracts controller radio telephony fatigue features and facial fatigue features and performs two-class feature-fusion discrimination. This study designed two independent convolutional processes for facial images and radio telephony data and performed feature-level fusion of the extracted radio telephony and facial image features in the fully connected layer, with the fused features transmitted to the classifier for fatigue state discrimination. The experimental results show that the detection accuracy of radio telephony features under a single modality was 62.88%, the detection accuracy of facial images was 96.0%, and the detection accuracy of the proposed AF dual-stream CNN network architecture reached 98.03% and also converged faster. In summary, a dual-stream network architecture based on facial data and radio telephony data is proposed for fatigue detection that is faster and more accurate than the other methods assessed in this study.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call