Abstract

In this letter, we investigate the air-to-ground (A2G) channel model and transmission performance for a cellular-connected massive multiple-input multiple-output unmanned aerial vehicle (UAV) swarm system. First, we propose a spatially and temporally correlated A2G channel model that focuses on non-isotropic scattering, line-of-sight (LoS) propagation, and moving scatterers. Second, we derive a novel closed-form signal-to-interference-and-noise ratio expression for uplink transmission, taking into account the effect of channel aging with strong LoS. The results show that the frame length, pilot overhead, and UAV swarm scale can be pre-designed in a fine-grained manner depending on the propagation environment and transmission task. For example, for a low-speed scenario, a long frame can be configured due to the negligible channel aging effect. Moreover, more pilots may mitigate the damage of channel aging, but it is no better when a short frame is needed for transmission such as ultra-reliable and low-latency communications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call