Abstract

The Gemini Planet Imager (GPI) is a near-infrared instrument that uses Adaptive Optics (AO), a coronagraph and advanced data processing techniques to achieve very high contrast images of exoplanets. The GPI Exoplanet Survey (GPIES) is a 600 stars campaign aiming at detecting and characterizing young, massive and self-luminous exoplanets at large orbital distances (>5 au). Science observations are taken simultaneously with environmental data revealing information about the turbulence in the telescope environment as well as limitations of GPI’s AO system. Previous work has shown that the timescale of the turbulence, τ0, is a strong predictor of AO performance, however an analysis of the dome turbulence on AO performance has not been done before. Here, we study correlations between image contrast and residual wavefront error (WFE) with temperature measurements from multiple locations inside and outside the dome. Our analysis revealed GPI’s performance is most correlated with the temperature difference between the primary mirror of the telescope and the outside air. We also assess the impact of the current temperature control and ventilation strategy at Gemini South (GS).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.