Abstract

We demonstrate an electrochromic device with self-bleaching ability that uses ethyl viologen- ([EV]2+) and ferrocene-based redox ionic liquids ([FcNTf]-) as the electroactive species. These electroactive compounds are insensitive to atmospheric O2 and H2O in both their oxidized and reduced states once dissolved in a typical ionic liquid electrolyte ([BMIm][NTf2]), allowing for the device to be assembled outside a glovebox without any encapsulation. This device could generate a deep blue color by the application of a 2.0 V potential between two fluorine-doped tin oxide (FTO) substrates to oxidize the ferrocenyl centers to [FcNTf]0 while reducing viologen to [EV]+•. Self-bleaching occurs at OCP as [EV]+• and [FcNTf]0 undergo homogeneous electron transfer in the electrolyte. The mass transport of ethyl viologen and ferrocenylsulfonyl(trifluoromethylsulfonyl)imide ([FcNTf]-) anion was evaluated by double potential step chronoamperometry to study the impact of the diffusion coefficient on the self-bleaching mechanism. The electrochromic device demonstrated here shows a contrast ΔT (610 nm) around 40% at 2.0 V as colored cell voltage, a switching time in the order of few seconds for coloration and bleaching, coloration efficiency of 105.4 to 146.2 cm2 C1- at 610 nm, and very high stability (94.8% ΔT after 1000 cycles) despite the presence of O2 and H2O in the electrolyte.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call