Abstract
Sodium-ion battery (SIB) is a candidate for the stationary energy storage systems because of the low cost and high abundance of sodium. However, the energy density and lifespan of SIBs suffer severely from the irreversible consumption of the Na-ions for the formation of the solid electrolyte interphase (SEI) layer and other side reactions on the electrodes. Here, Na3.5C6O6 is proposed as an air-stable high-efficiency sacrificial additive in the cathode to compensate for the lost sodium. It is characteristic of low desodiation (oxidation) potential (3.4-3.6V vs. Na+/Na) and high irreversible desodiation capacity (theoretically 378 mAh g-1). The feasibility of using Na3.5C6O6 as a sodium compensation additive is verified with the improved electrochemical performances of a Na2/3Ni1/3Mn1/3Ti1/3O2ǀǀhard carbon cells and cells using other cathode materials. In addition, the structure of Na3.5C6O6 and its desodiation path are also clarified on the basis of comprehensive physical characterizations and the density functional theory (DFT) calculations. This additive decomposes completely to supply abundant Na ions during the initial charge without leaving any electrochemically inert species in the cathode. Its decomposition product C6O6 enters the carbonate electrolyte without bringing any detectable negative effects. These findings open a new avenue for elevating the energy density and/or prolonging the lifetime of the high-energy-density secondary batteries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.