Abstract

Abstract Air separation properties and stabilities of four blend membranes, 1–30-μ.m thick, prepared from ethyl cellulose (EC) with a small amount of nematic and cholesteric liquid crystals, such as p-heptyl-p'-cyanobiphenyl (7CB), p-pentylphenol-p'-methoxybenzoate (5PMB), benzoate-containing liquid crystal mixture (DYC), and cholesteryl oleyl carbonate (COC), were investigated by the variable volume method. To provide more significant information guiding membrane-based air separation, air was directly used as the test gas. The membranes showed both higher oxygen permeability, P O2 , and oxygen over nitrogen separation factor, P O2 /P N2 , in the temperature range of the liquid crystalline phase. Oxygen-enriched air (OEA) flux, Q OEA, and oxygen concentration. Y O2 increased simultaneously with increasing transmembrane pressure difference. Stability studies revealed that the efficiencies of concentrating oxygen using 1–7-μm thick DYC/EC (9/91) membranes laminated to porous polyethersulfone membranes were ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.