Abstract

In 2000, the American Conference of Governmental Industrial Hygienists (ACGIH(R)) changed its 1971 threshold limit value (TLV) for 8-hour time-weighted average (TWA) exposure to asphalt from 5 mg/m(3) total particulate (generally < or =40 micrometer [microm] diameter) to 0.5 mg/m(3) inhalable particulate (< or =100 microm aerodynamic diameter) as benzene-soluble aerosol. To date, no inhalable particulate sampling method has been standardized and validated for asphalt fume. Furthermore, much of the historical data were collected using total particulate samplers, and the comparability of total versus inhalable size fractions of asphalt fume is not known. Therefore, the present study compared results from two types of asphalt fume samplers: 1) a traditional total particulate sampler with a 37-mm filter in a closed-face cassette with a 4-mm orifice (NIOSH 5042) versus (2) an inhalable particulate sampler designed by the IOM with a 15-mm orifice. A total of 75 simultaneous pairs of samples were collected, including personal and area samples from 19 roofing and asphalt production facilities operated by 7 different manufacturers. Each sample was analyzed for total mass collected and for benzene-soluble mass. Data from the two sampling methods (total versus inhalable) were comparable for asphalt fumes up to an aerosol concentration of 10 mg/m(3). However, we conclude that the traditional total particulate method is preferable, for this reason: The vast majority of asphalt fume particles are <12.5 microm in diameter. The traditional sampler is designed to collect primarily particles < or =40 microm, while the IOM sampler is optimized for collecting particles < or =100 microm. Thus, the traditional sampler is less likely than the IOM sampler to collect the larger-size fraction of airborne particles, most of which are non-asphalt dust.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.