Abstract

In order to determine the rate and magnitude of respiratory O2 depletion during dives of emperor penguins (Aptenodytes forsteri), air sac O2 partial pressure (PO2) was recorded in 73 dives of four birds at an isolated dive hole. These results were evaluated with respect to hypoxic tolerance, the aerobic dive limit (ADL; dive duration beyond which there is post-dive lactate accumulation) and previously measured field metabolic rates (FMRs). 55% of dives were greater in duration than the previously measured 5.6-min ADL. PO2 and depth profiles revealed compression hyperoxia and gradual O2 depletion during dives. 42% of final PO2s during the dives (recorded during the last 15 s of ascent) were <20 mmHg (<2.7 kPa). Assuming that the measured air sac PO2 is representative of the entire respiratory system, this implies remarkable hypoxic tolerance in emperors. In dives of durations greater than the ADL, the calculated end-of-dive air sac O2 fraction was <4%. The respiratory O2 store depletion rate of an entire dive, based on the change in O2 fraction during a dive and previously measured diving respiratory volume, ranged from 1 to 5 ml O2 kg(-1) min(-1) and decreased exponentially with diving duration. The mean value, 2.1+/-0.8 ml O2 kg(-1) min(-1), was (1) 19-42% of previously measured respiratory O(2) depletion rates during forced submersions and simulated dives, (2) approximately one-third of the predicted total body resting metabolic rate and (3) approximately 10% of the measured FMR. These findings are consistent with a low total body metabolic rate during the dive.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call