Abstract

Predicting and forecasting air quality is the one of the most essential activity in the Smart City. Recently, there are many study to use the machine learning approaches for evaluating and predicting air quality using big data. The aim of this study is to obtain machine learning model for air quality forecasting using previous air quality station data and the weather data. The air quality depends on multi-dimensional factors including location, time, weather parameters, such as temperature, humidity, wind direction and force, air pressure, etc. There are many machine learning approaches, but artificial neural Network model tries to simulate the structures and networks within human brain. It is convenient for working to find relation between multi parameters. If the neural network could determine the relation of the air quality using the weather and air quality data of last year, it is possible to predict approximately air quality of Ulaanbaatar city. We used features including parameters of temperature, humidity, wind direction, air pressure, PM2.5 and PM10, NO2, CO, SO2 and measuring time to build recurrent neural network model that is the class of artificial neural network. In this work we did machine learning test of neural network algorithm for the air quality prediction using LSTM /long short term memory/ model and discussed machine learning test results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.