Abstract
This paper presents an ambient air quality monitoring and prediction system. The system consists of several distributed monitoring stations that communicate wirelessly to a backend server using machine-to-machine communication protocol. Each station is equipped with gas- eous and meteorological sensors as well as data logging and wireless communication capabilities. The backend server collects real time data from the stations and converts it into information delivered to users through web portals and mobile applications. In addition to manipulating the real time information, the system is able to predict futuristic concentration values of gases by applying artificial neural networks trained by historical and collected data by the system. The system has been implemented and four solar-powered stations have been deployed over an area of 1 km2. Data over four months has been collected and artificial neural networks have been trained to predict the average values of the next hour and the next eight hours. The results show very accurate prediction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.