Abstract

Charcoal production is often accompanied with gaseous and particulate emission into the atmosphere and occupationally exposed workers could be affected. This cross sectional comparative study was carried out to assess the levels of carbon monoxide (CO), carbon dioxide (CO2), sulphur dioxide (SO2), nitrogen dioxide (NO2) and particulate matter (PM2.5) generated during the phases of charcoal production and their relationship with certain biomarkers among charcoal workers (subjects) and non-charcoal workers (controls) such as carboxyhaemoglobin (COHb), forced expiratory volume in the first second of expiration (FEV1), peak expiratory flow rate (PEFR) and body mass index (BMI) in Igbo-Ora, Oyo State and Alabata, Ogun State, which are two of the major hubs of charcoal production in South Western Nigeria. Four communities in Igbo-Ora and six communities in Alabata were purposively selected and levels of pollutant gases were assessed using appropriate gas meters, PM2.5 was assessed with Thermo Scientific MIE pDR-1500, FEV1 and PEFR were measured with Piko-1 spirometer while COHb was assessed using non-invasive pulse CO-oximeter (Rad 57). Data were statistically analyzed and results were compared with recommended guidelines. The mean FEV1, PEFR, COHb and BMI for subjects and controls were 2.35 ± 0.73 and 2.69 ± 0.56, 253.72 ± 103.45 and 330.02 ± 94.61 (p < 0.01), 13.28 ± 3.91 and 8.50 ± 3.68 (p < 0.01) and 21.97 ± 2.19 and 23.36 ± 3.74 (p < 0.05) respectively. There was a statistically significant difference between actual and expected values of FEV1 (p < 0.01) and PEFR (p < 0.01) among charcoal workers. There existed a positive correlation between CO and COHb while FEV1 and PEFR correlated negatively with PM2.5. The study showed that charcoal workers are exposed to high levels of CO and PM2.5, contributing to lowered respiratory functions for FEV1 and PEFR and high levels of COHb compared to the control group. Routine respiratory and carboxyheamoglobin assessment of persons involved in charcoal production is also recommended.

Highlights

  • Emissions from biomass burning is known to generate a large number of air pollutants e.g. respirable particulate matter (PM), carbon monoxide (CO), nitrogen oxides (NOx), Olujimi et al SpringerPlus (2016) 5:1546 sulphur oxides (SOx), formaldehyde, benzene, 1, 3-butadiene, polycyclic aromatic hydrocarbon (PAH) including carcinogens such as benzo[a]pyrene and other toxic organic compounds that can damage human health (Ezzati et al 2000; Mishra and Retherford 2007)

  • These results indicate that the average CO concentration is above the Nigeria Ambient Air Quality Standard (NAAQS) which stipulates an average concentration of 10–20 ppm for an 8-hourly average time (FEPA 1999)

  • Majority of charcoal workers experienced frequently most of the symptoms and conditions while non-charcoal workers rarely experienced symptoms

Read more

Summary

Introduction

Emissions from biomass burning is known to generate a large number of air pollutants e.g. respirable particulate matter (PM), carbon monoxide (CO), nitrogen oxides (NOx), Olujimi et al SpringerPlus (2016) 5:1546 sulphur oxides (SOx), formaldehyde, benzene, 1, 3-butadiene, polycyclic aromatic hydrocarbon (PAH) including carcinogens such as benzo[a]pyrene and other toxic organic compounds that can damage human health (Ezzati et al 2000; Mishra and Retherford 2007). There has been major shift from the use of petroleum products and electricity due to high cost and epileptic power supply to the use of charcoal in both the rural and urban centers in Nigeria. This shift have resulted in high demand for charcoal with attendant environmental and health effects. The rudimentary process of charcoal production entails carbonization of wood with consequent release of smoke from kiln set ups that charcoal workers are continuously exposed to (Souza et al 2005)

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call