Abstract

Air pollution exerts crucial influence on crop yields and impacts regional and global food supplies. Here we employ a statistical model using satellite-based observations and flexible functional forms to analyse the synergistic effects of reductions in ozone and aerosols on China's food security. The model consistently shows that ozone is detrimental to crops, whereas aerosol has variable effects. China's maize, rice and wheat yields are projected to increase by 7.84%, 4.10% and 3.43%, respectively, upon reaching two air quality targets (60 μg m-3 for peak-season ozone and 35 μg m-3 for annual fine particulate matter). Average calories produced from these crops would surge by 4.51%, potentially allowing China to attain grain self-sufficiency 2 years earlier than previously estimated. These results show that ozone pollution control should be a high priority to increase staple crop edible calories, and future stringent air pollution regulations would enhance China's food security.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.