Abstract

Air‐promoted adsorptive desulfurization (ADS) of commercial diesel fuel over a Ti‐Ce mixed oxide adsorbent in a flow system is investigated in this work. The fresh/spent adsorbents were characterized using X‐ray absorption near edge structure spectroscopy. Results show that sulfoxide species are formed during air‐promoted ADS over Ti0.9Ce0.1O2 adsorbent. Adsorption selectivity of various compounds in fuel follows the order of dibenzothiophene sulfone > dibenzothiophene ≃ benzothiophene > 4‐methyldibenzothiophene > 4,6‐dimethyldibenzothiophene > phenanthrene > methylnaphthalene > fluorene > naphthalene. The high adsorption affinity of sulfoxide/sulfone is attributed to stronger Ti‐OSR2 than Ti‐SR2 interactions, resulting in significantly enhanced ADS capacity. Adsorption affinity was calculated using ab initio methods. For Ti‐Ce mixed oxides, reduced surface sites lead to O‐vacancy sites for O2 activation for oxidizing thiophenic species. Low temperature is preferred for air‐promoted ADS, and the Ti‐Ce adsorbent can be regenerated via oxidative air treatment. This study paves a new path of designing regenerable adsorbents. © 2014 American Institute of Chemical Engineers AIChE J, 61: 631–639, 2015

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call