Abstract

In this paper, the computational fluid dynamics (CFD) methodology as well as the shear-stress transport (SST) k-omega turbulence model was adopted to model the air pressure reducer (APR). Changing the gas needle’s displacement of APR continuously, the writer obtains the displacement-pressure characteristics of APR. In order to demonstrate the validity of these characteristics, a physical experiment was conducted, which generates another displacement-pressure characteristic. Comparing the two characteristics with a good agreement, it is indicated that the CFD methodology is suitable to study the displacement-pressure characteristics of APR.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.