Abstract
Air pollution prediction was not an easy task few years back. With the increasing computation power and wide availability of the datasets, air pollution prediction problem is solved to some extend. Inspired by the deep learning models, in this paper three techniques for air pollution prediction have been proposed. The models used includes recurrent neural network (RNN), Long short-term memory (LSTM) and a hybrid combination of Convolutional neural network (CNN) and LSTM models. These models are tested by comparing MSE loss on air pollution test of Belgium. The validation loss on RNN is 0.0045, LSTM is 0.00441 and CNN and LSTM is 0.0049. The loss on testing dataset for these models are 0.00088, 0.00441 and 0.0049 respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Computational and Theoretical Nanoscience
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.