Abstract

Light pollution is a novel environmental problem whose extent and severity are rapidly increasing. Among other concerns, it threatens global biodiversity, nocturnal animal migration, and the integrity of the ground-based astronomy research enterprise. The most familiar manifestation of light pollution is skyglow, the result of the interplay of outdoor artificial light at night (ALAN) and atmospheric scattering that obscures views of naturally dark night skies. Interventions to reduce night sky brightness (NSB) involving the adoption of modern lighting technologies are expected to yield the greatest positive environmental consequences, but other aspects of the problem have not been fully explored as bases for public policies aimed at reducing light pollution. Here we show that reducing air pollution, specifically aerosols, decreases NSB by tens of percent at relatively small distances from light sources. Cleaner city air lowers aerosol optical depth and darkens night skies, particularly in directions toward light sources, due to relatively short path lengths traversed by photons from source to observer. A field experiment demonstrating the expected changes when transitioning from conditions of elevated turbidity to cleaner air validated our hypothesis. Our results suggest new policy actions to augment and enhance existing light pollution reduction techniques targeting lighting technology and design.

Highlights

  • Light pollution is a novel environmental problem whose extent and severity are rapidly increasing

  • aerosol optical depth (AOD) is commonly used to characterize the attenuation of light beams as they traverse the atmosphere, and it relates to the cross section of particles in a particular way

  • We expect a diversity of optical effects with a wide range of amplitudes from aerosol mixtures suspended in air

Read more

Summary

Introduction

Light pollution is a novel environmental problem whose extent and severity are rapidly increasing. Nature, and sizes of aerosol particles, as well as their transport from air pollution sources, the mean free path of photons can change, potentially shortening the average distance between consecutive scattering events.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.