Abstract

The use of infrared methods in pollution measurement has been hampered by sensitivity limitations and by interferences from water vapor. Fourier transform spectrometer systems reduce these limitations by their high optical efficiency and their ability to manipulate spectra for removal of interfering bands. At the Environmental Protection Agency we have sought to further increase the sensitivity of the infrared technique by evolving optimal long path cell designs and sample concentration techniques. Reactive pollutants such as O(3), H(2)O(2), HNO(3), HNO(2), H(2)CO, HCOOH, PAN, HCl, NH(3), NO, and NO(2) are best measured in the open atmosphere. In this case one strives toward large absorption cells with the paths as long as practical. Our largest cell is being used to measure pollutants in the smog at Riverside, California. This cell uses an eight-mirror system for multiple-passing radiation along a 23-m base path, yielding total paths measured in kilometers. Reactive gases at levels of just a few ppb have been measured. For measuring nonreactive pollutants, such as hydrocarbons and halocarbons, maximum detection sensitivity is achieved with small folded-path cells rather than with large cells. In this case a pollutant concentrate is prepared and introduced into a miniaturized multiple-pass cell designed for maximum path-to-volume ratio. Cryogenic trapping to separate the pollutants from the major constituents of the air has yielded concentration factors as high as one million. The smallest multiple-pass cell we have built to date encloses a 115-cm light path within a volume of 3 cm(3). This cell when used with the FTS spectrometer and mercury-cadmium-telluride detector permits the detection of nanogram quantities of pollutant gases. Measurements have been made of trace gases in the air at mixing ratios as low as 2 x 10(-11).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.