Abstract

Kaohsiung City and its neighborhood in the southwestern coastal plain of Taiwan have suffered serious air pollution since the region became the largest center for heavy-industry on the island. In order to unravel the air pollution history of the region, four 210Pb- and 137Cs-dated sediment box cores recovered in 2006 from offshore of this area were chosen for magnetic and petrographic analyses. The data were used to distinguish changes in concentration, composition and grain size of magnetic particles in the sediments due to inputs of anthropogenic magnetic spherules. Sedimentation rates have been reasonably constant for the last one hundred years, except at the core tops which were affected by a turbidite layer induced by a typhoon in 2005. Down-core profiles of mass-specific magnetic susceptibility ( χ) and saturation isothermal remanent magnetization (SIRM) are similar among the cores, and reflect similar trends to magnetic spherule counts. This reveals that χ and SIRM of modern marine sediments can be used as air pollution indicators for nearby industrialized upwind areas. The studied record indicates that industrialization of the area was gradual during 1950–1980 and boomed afterward, resulting in a high production of airborne magnetic spherules, which is consistent with evidence for poor air quality at that time. Optical and scanning electron microscopic (SEM) surveys of magnetic extracts indicate that the magnetic spherules have grain sizes ranging from a few micrometers up to 50 μm and consist mainly of iron oxides with variable Si, Al, and Ca contents. X-ray diffraction analysis on magnetic extracts from different depths in the cores further indicates that magnetite and pyrrhotite, which are derived from terrigenous detritus, form the magnetic constituents of the sediments before the area was industrialized. In contrast, during the industrial boom, anthropogenic magnetite and hematite spherules became the dominant magnetic particles in the sediments. Down-core profiles of hard isothermal remanent magnetization (HIRM) below the turbidite layer also reveal similar trends to the corresponding magnetic spherule counts, which indicate that the concentration of hematite in the sediments is also closely related to the extent of air pollution. In addition, relatively low values of χ ARM/ χ, which are indicative of coarse magnetic grains, started to occur when large magnetite spherules became significant during the industrialized period. The air pollution history elucidated from our sediment core data not only reflects the development of Kaohsiung from a small village to a highly industrialized metropolitan area in the 20th century, but it is also consistent with the most recent air pollution trends revealed by real time air quality measurements of PM 10. Our results demonstrate the usefulness of magnetic parameters for delineating the air pollution history of coastal marine sediments down-wind of nearby industrialized regions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call