Abstract
BackgroundDespite evidence that ambient air pollution may play a role in the development of asthma, little is known about the potential contribution of industrial emissions. ObjectiveWe used a population-based birth cohort to investigate the association between asthma onset in childhood and residential exposure to industrial emissions, estimated from atmospheric dispersion modeling. MethodsThe study population comprised all children born in the province of Quebec, Canada, 2002-2011. Asthma onset were ascertained from health administrative databases with validated algorithms. We used atmospheric dispersion modeling to develop time-varying annual mean concentration of ambient PM2.5, NO2 and SO2 at participants' residence from industries. For each pollutant, we assessed the association between industrial emissions exposure and childhood asthma onset using Cox proportional hazard model, adjusted for sex, material and social deprivation and calendar year. Sensitivity analysis included adjusting for long-term regional and traffic-related ambient PM2.5 and NO2, and assessing potential confounding by unmeasured secondhand smoke. ResultsThe cohort included 722,667 children and 66,559 incident cases of asthma. For all pollutants, we found a non-linear association between childhood asthma onset and residential ambient air pollutant concentration from industries, with stronger effects at lower concentrations. A change from 25th to the 75th percentile in the mean annual ambient concentration of PM2.5 (0.13 μg/m3), NO2 (1.0 μg/m3) and SO2 (1.6 μg/m3) from industrial emissions was associated with a 19% (95% CI: 17-20%), 21% (95% CI: 19-23%) and 23% (95% CI: 21-24%) increase in the risk of asthma onset in children, respectively. For PM2.5 and NO2, associations were persisting after adjustments for long-term regional PM2.5 and traffic-related NO2 ambient concentration.Conclusion: Residential exposure to industrial emissions estimated from dispersion modeling was associated with asthma onset in childhood. Importantly, associations were stronger at lower concentrations and independent from those of other sources, thus adding up to the burden of regional and traffic-related air pollution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.