Abstract

BackgroundIndoor air pollution, including fine particulate matter (PM2.5) and carbon monoxide (CO), is a major risk factor for pneumonia and other respiratory diseases. Biomass-burning cookstoves are major contributors to PM2.5 and CO concentrations. However, high concentrations of PM2.5 (> 1000 μg/m3) have been observed in homes in Dhaka, Bangladesh that do not burn biomass. We described dispersion of PM2.5 and CO from biomass burning into nearby homes in a low-income urban area of Dhaka, Bangladesh.MethodsWe recruited 10 clusters of homes, each with one biomass-burning (index) home, and 3–4 neighboring homes that used cleaner fuels with no other major sources of PM2.5 or CO. We administered a questionnaire and recorded physical features of all homes. Over 24 h, we recorded PM2.5 and CO concentrations inside each home, near each stove, and outside one neighbor home per cluster. During 8 of these 24 h, we conducted observations for pollutant-generating activities such as cooking. For each monitor, we calculated geometric mean PM2.5 concentrations at 5-6 am (baseline), during biomass burning times, during non-cooking times, and over 24 h. We used linear regressions to describe associations between monitor location and PM2.5 and CO concentrations.ResultsWe recruited a total of 44 homes across the 10 clusters. Geometric mean PM2.5 and CO concentrations for all monitors were lowest at baseline and highest during biomass burning. During biomass burning, linear regression showed a decreasing trend of geometric mean PM2.5 and CO concentrations from the biomass stove (326.3 μg/m3, 12.3 ppm), to index home (322.7 μg/m3, 11.2 ppm), neighbor homes sharing a wall with the index home (278.4 μg/m3, 3.6 ppm), outdoors (154.2 μg/m3, 0.7 ppm), then neighbor homes that do not share a wall with the index home (83.1 μg/m3,0.2 ppm) (p = 0.03 for PM2.5, p = 0.006 for CO).ConclusionBiomass burning in one home can be a source of indoor air pollution for several homes. The impact of biomass burning on PM2.5 or CO is greatest in homes that share a wall with the biomass-burning home. Eliminating biomass burning in one home may improve air quality for several households in a community.

Highlights

  • Indoor air pollution, including fine particulate matter (PM2.5) and carbon monoxide (CO), is a major risk factor for pneumonia and other respiratory diseases

  • Biomass burning is well recognized as a source of indoor air pollution in homes, the effects of biomass burning on neighboring homes are not well understood. In this observational cohort study, we aimed to describe the dispersion of PM2.5 and CO from biomass cookstove sources into neighboring homes and determine the contribution of neighbors’ biomass burning stoves to PM2.5 and CO concentrations within homes, in a low-income urban area in Mirpur, Dhaka, Bangladesh

  • We examined the following as potential confounders: building material(s) of the home, having a smoker living in the home, distance to the index home, area of the home, having a secondary biomass stove, ambient temperature, and relative humidity

Read more

Summary

Introduction

Indoor air pollution, including fine particulate matter (PM2.5) and carbon monoxide (CO), is a major risk factor for pneumonia and other respiratory diseases. High concentrations of PM2.5 (> 1000 μg/m3) have been observed in homes in Dhaka, Bangladesh that do not burn biomass. We described dispersion of PM2.5 and CO from biomass burning into nearby homes in a low-income urban area of Dhaka, Bangladesh. Residents of Dhaka, Bangladesh experience high levels of indoor and ambient air pollution exposure [2,3,4], as well as a high burden of disease from acute lower respiratory infection (ALRI) [5]. Fine particulate matter (PM2.5), suspended particles in the air of 2.5 μm or less in diameter, and carbon monoxide (CO) are common indicators of indoor air pollution in low-income settings because they are relatively easy to measure and have known health effects [6, 7]. Ventilation, ambient air pollution, and building materials may affect indoor air quality in a home [3, 17,18,19]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call