Abstract

Four lichen species, Parmelia sulcata Taylor, Hypogymnia physodes (L.) Nyl., Cetraria islandica (L.)Ach., and Bryoria fuscescens (Gyelnik) Brodo andHawksworth were exposed during autumn and winter at differentsites of the Erzgebirge (Ore Mountains), the Fichtelgebirge andcontrol sites. All lichens tested became visibly damaged withtime. Thallus bleaching started from the edges and went on tothe centre of the thallus. Sites of facilitated gas exchangelike the soralia of P. sulcata and the pseudocyphelles ofC. islandica became preferentially bleached. The sulfateconcentration increased with exposure time reaching 200% ofunpolluted controls. In contrast to coniferous trees (e.g. Picea abies), further exposure lead to a reduction in the S-concentration in the lichens, as sulfate and otherintracellular metabolites were leached from the thalli due tomembrane damage. The changes in the K-concentration proved tobe an excellent measure for membrane leakiness; it wascorrelated with time of exposure and with SO2 concentrations at the different sites. Photosynthetic capacityand respiration were also strongly affected. Depending on theSO2-dose, the Bryoria species were unable tophotosynthesize as early as 4–8 weeks after exposure, whereasCetraria and Hypogymnia showed clear reduction intheir ability to photoreduce CO2 within 8–10 weeks ofexposure in the field. Parmelia sulcata was found to bethe most tolerant species. After 3–4 months, photosynthesis wasreduced by only 30%. The bioindicative value of theseobservations is discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call