Abstract
In order to generate air-pollutant exposure fields for health studies, a data fusion (DF) approach is developed that combines observations from ambient monitors and simulated data from the Community Multiscale Air Quality (CMAQ) model. These resulting fields capture the spatiotemporal information provided by the air quality model, as well as the finer temporal scale variations from the pollutant observations and decrease model biases. Here, the approach is applied to develop daily concentration fields for PM2.5 total mass, five major particulate species (OC, EC, SO4 2−, NO3 −, and NH4 +), and three gaseous pollutants (CO, NO x , and NO2) from 2006 to 2008 over North Carolina (USA). Several data withholding methods are then conducted to evaluate the data fusion method, and the results suggest that typical approaches may overestimate the ability of spatiotemporal estimation methods to capture pollutant concentrations in areas with limited or no monitors. The results show improvements in capturing spatial and temporal variability compared with CMAQ results. Evaluation tests for PM2.5 led to an R 2 of 0.95 (no withholding) and 0.82 when using 10% random data withholding. If spatially based data withholding is used, the R 2 is 0.73. Comparisons of DF-developed PM2.5 total mass concentration with the spatiotemporal fields derived from two other methods (both use satellite aerosol optical depth (AOD) data) find that, in this case, the data fusion fields have slightly less overall error, with an RMSE of 1.28 compared with 3.06 μg/m3 (two-stage statistical model) and 2.74 (neural network-based hybrid model). Applying the Integrated Mobile Source Indicator (IMSI) method shows that the data fusion fields can be used to estimate mobile source impacts. Overall, the growing availability of chemically detailed air quality model fields and the accuracy of the DF field, suggest that this approach is better able to provide spatiotemporal pollutant fields for gaseous and speciated particulate pollutants for health and planning studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.