Abstract

Air permeability and capillary pressure are macroscopic snow properties that are influenced by the pore structure of the snow cover. Formulas for predicting fluid transport, species elution, and acoustive wave propagation require parameterization of one or both of these properties. We report paired measurements of permeability and capillary rise from snow samples at field sites in Hanover, New Hampshire, and Sleepers River Research Watershed, Danville, Vermont. We augment these data with laboratory tests on sieved snow and glass beads. Our measurements demonstrate a linear relationship between permeability and the ratio of porosity and the square of capillary rise, which we corroborate theoretically using a simple conduit model of the pore space. We propose that scatter in the data results, in part, from the effect of crystal shape on air flow and imbibition contact angle. Since the early measurements and classification schemes of Bader in 1939, many investigators have expanded the database of permeability observations for a wide range of snow types. We summarize these data and report our own recent observations from the New England sites and from an additional site in Manitoba, Canada. Our measurements are in the high range of reported values. However, after normalizing our data by the square of grain diameter, they follow the empirical function of Shimizu fairly closely. This agreement supports our measurements, and demonstrates the usefulness of Shimizu's function for snow types other than the relatively dense, fine-grained snow used in his analysis. Our normalized permeability data for low density snow, as well as the Shimizu function, are below theoretical predictions for suspensions of spheres and infinite cylinders. By extending the model for spheres to oblate spheroids and discs, we estimate permeability that is in closer agreement with our data. We suggest that a decrease in surface-to-volume ratio as snow ages may account for a relative increase in normalized permeability. Copyright © 1999 John Wiley & Sons, Ltd.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call