Abstract

Peak power consumption is becoming an increasing problem worldwide and particularly in France during the late afternoon winter periods. This paper describes the experimental and numerical studies carried out to investigate the potential of a PCM (phase change material) – Air heat exchanger, conceived for load shifting purposes. The objective is to possess the necessary tools for the development of advanced control strategies taking into account various factors: peak power reduction, thermal comfort and indoor air quality. The experimental approach involved the construction of a heat exchanger coupled to an experimental cell. The heat storage system is composed of a set of PCM (paraffin) plates, embedded in the exchanger and integrated in a ventilation system. In parallel, a numerical model was developed using the apparent heat capacity approach and the finite differences method. Furthermore, a series of characterization tests was conducted and the experimental data were used for model calibration and validation. The model was then coupled with a building simulation program, presenting good agreement between the integrated model prediction and the experimental data.Finally, a preliminary control strategy of the test cell is presented along with results demonstrating the capabilities of such system for peak load management.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.