Abstract

The oxidation of three quinary equimolar high-entropy alloys, containing FeCoNiCrAl, FeCoNiCrMn, and FeCoNiCrSi was studied in dry air at 700–900°C. The Mn-containing alloy was single-phase, while both Al- and Si-containing alloys were dual-phase. The oxidation kinetics of all the alloys followed the parabolic rate law, regardless of temperature and alloy composition. The oxidation rates of both Al- and Si-containing alloys were lower than those of the quaternary FeCoNiCr alloy, while those of the Mn-containing alloy went to an opposite direction. Multiple scales formed on the alloys were strongly composition-dependent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.