Abstract

Coherent Raman spectroscopy (CRS) with air-laser-based hybrid femtosecond/picosecond (fs/ps) pulses has shown promising potential for remote detection and surveillance of atmospheric species with high temporal and frequency resolution. Here, to enhance the sensitivity and extend the detection distance, we generate the CRS spectra of air molecules in situ in a filamentary plasma grating, and show that the grating can efficiently enhance the intensities of the coherent vibrational Raman lines of N2, O2, and N2 + by 2-3 orders of magnitude at an extended distance. By examining the intensities of the Raman lines, fs-pulsed supercontinuum, and ps-pulsed air laser produced under different grating conditions, we reveal that the optimization of the Raman lines is achieved by the dynamic balance between the supercontinuum-induced vibrational coherence and air-laser-induced polarization of the air species.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call