Abstract
Air injection systems have a wide range of environmental engineering applications. In this study, we conducted experiments on air injection in a relatively large water tank to investigate the effect of nozzle type, including single/multiple orifice nozzles and a porous airstone, on the characteristics of the bubbles and the induced flow structure. Measurements of bubble characteristics and flow field surrounding the bubble core were obtained using a double-tip optical probe and particle image velocimetry, respectively. The results revealed that bubble velocity did not change significantly with different nozzles, but bubble size decreased significantly while interfacial area, liquid entrainment rate, and kinetic energy of the mean and turbulent flow increased significantly by using the porous airstone instead of nozzles with large orifices. The results for a nozzle with multiple orifices of small diameter are comparable to those for the airstone, which suggests the suitability of its use for systems susceptible to clogging of the pores. Correlations using adequate length and velocity scales are also proposed to describe both bubble and liquid flow characteristics. Finally, applications of the results for different artificial aeration/mixing systems are presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.